Electric Power Group Presents Maximizing Use of Synchrophasor Technology for Everyday Tasks

Welcome!

The meeting will begin at 2:00 p.m. ET / 11:00 a.m. PT June 21, 2017

Today's Topic: Generator Model Validation using PMU data for MOD-26, MOD-27 Requirements

Registration URL: https://electricpowergroup2.webex.com/ Webinar Teleconference Number: 1-650-479-3208 Access code: 667 000 612

Please mute your phone during the presentation.

We will encourage discussion at planned QA session. Thank you for your cooperation.

For any technical issues with this webinar, please contact Kosareff@electricpowergroup.com or call (626) 685–2015

Maximizing Use of Synchrophasor Technology for Everyday Tasks

Generator Model Validation using PMU data for MOD-26, MOD-27 Requirements

Webinar

June 21, 2017

Presented by Neeraj Nayak, EPG

Outline

- Introduction
- Methodology
 - > Validation Process
 - > Calibration Process
- Case Study Gas Turbine Generator
- Key Takeaways
- Q&A, Discussion
- Summary

Challenge & Need

- Models are widely used in power system planning and operation studies
- Models are used to predict response of the grid and assess system stability during events
- Inaccurate models result in incorrect determination of system response and system stability. For e.g. August 1996 blackout – models did not represent reality
- Traditional staged tests for Generator Model Validation
 - > Require units to be taken out of service
 - > Expensive and Time consuming
- NERC MOD-026, MOD-027 reliability standards require verification of generator dynamic models including excitation controls, governor and turbine controls
- Synchrophasor data from PMUs provides a cost effective and efficient way to validate generator model parameters

NERC MOD-026-1 & MOD-027-1 Requirements

Standard MOD-026-1 — Verification of Models and Data for Generator Excitation Control System or Plant Volt/Var Control Functions

A. Introduction

- 1. Title: Verification of Models and Data for Generator Excitation Control System or Plant Volt/Var Control Functions
- 2. Number: MOD-026-1
- 3. Purpose: To verify that the generator excitation control system or plant volt/var control function¹ model (including the power system stabilizer model and the impedance compensator model) and the model parameters used in dynamic simulations accurately represent the generator excitation control system or plant volt/var control function behavior when assessing Bulk Electric System (BES) reliability.
- 4. Applicability:
 - 4.1. Functional Entities:
 - 4.1.1 Generator Owner
 - 4.1.2 Transmission Planner

Standard MOD-027-1 — Verification of Models and Data for Turbine/Governor and Load Control or Active Power/Frequency Control Functions

A. Introduction

- 1. Title: Verification of Models and Data for Turbine/Governor and Load Control or Active Power/Frequency Control Functions
- 2. Number: MOD-027-1
- 3. Purpose: To verify that the turbine/governor and load control or active power/frequency control¹ model and the model parameters, used in dynamic simulations that assess Bulk Electric System (BES) reliability, accurately represent generator unit real power response to system frequency variations.
- 4. Applicability:
 - 4.1. Functional entities
 - 4.1.1 Generator Owner
 - 4.1.2 Transmission Planner

Source: NERC Reliability Standards, http://www.nerc.com/pa/Stand/Reliability%20Standards/MOD-026-1.pdf Source: NERC Reliability Standards, http://www.nerc.com/pa/Stand/Reliability%20Standards/MOD-027-1.pdf

NERC MOD-026 and MOD-027 Applicability

	Table 2: MOD-026 and MOD-027 Applicability									
Interconnection	"Individual generating unit" (gross nameplate rating)	"Individual generating plant consisting of multiple generating units that are directly connected at a common BES bus with total generation" (gross aggregate nameplate rating)								
Eastern or Quebec	> 100 MVA	> 100 MVA								
Western	> 75 MVA	> 75 MVA								
ERCOT	> 50 MVA	> 75 MVA								

Source: NERC Reliability Guideline, "Power Plant Dynamic Model Verification using PMUs", September 2016

NERC MOD-027 Criteria for selecting frequency Events

Table 3: Frequency Event Criteria									
Interconnection	Frequency Deviation from Scheduled Frequency								
Eastern	≥ 0.05 Hz								
ERCOT and Western	≥ 0.10 Hz								
Quebec	≥ 0.15 Hz								

Source: NERC Reliability Guideline, "Power Plant Dynamic Model Verification using PMUs", September 2016

NERC Requirements (R1-R6) Flowchart

Source: NERC Reliability Guideline, "Power Plant Dynamic Model Verification using PMUs", September 2016

Generator Parameter Validation (GPV)

- EPG Developed Generator Parameter Validation (GPV) Tool & Process for Generator Model Validation
- Inputs
 - > PMU Measured Event Data
 - > Model power flow & dynamic data
- Methodology
 - > Automated System Reduction & Initial conditions matching
 - > Validation Comparing simulated response to PMU measurements
 - > Automated Process of Identifying key Parameters using Sensitivity Analysis
 - > Calibration Allows user input & Engineering Judgement
- Types of Models that can be validated: Generator, Governor, Exciter, Stabilizer
- Tested and Validated for Steam Turbine, Gas Turbine Generator Presented at NASPI 2016 Workshop
- Benefits
 - > No need to take Units Offline Reduces Cost Significantly
 - > Can be repeated frequently

Methodology

GPV Process - Validation

Steps :

- 1. Input Data
 - a) PMU Recorded Disturbance Data at Generator terminals or POI
 - b) Model Information Power Flow and Dynamic Files
- 2. Automatic System Reduction
 - > GPV will reduce the system beyond the boundary bus (PMU bus) keeping the Target Generator bus and the Boundary bus in the reduced system
- 3. Match initial conditions of the model to PMU measurements at the time of the event
- 4. Validation Process
 - > Play in Voltage and Angle measurements from the PMU
 - > Compare the measured P, Q response with model simulation

GPV Process - Calibration

🐇 Electric Power Group

*Source: Wei-Jen Lee et. al., "PMU based generator parameter identification to improve the system planning and operation"

Input Data & System Reduction

- High resolution PMU data (Voltage, Angle, P, Q) for selected grid disturbances (.xlsx);
- Network Model and Dynamic Data in PSS[®]E saved case format (.sav) and dynamics data format (.dyr)
- Individual generator data is required.
 For example: if Plant A has two Generators, PMU data should be taken directly from the output of the target generator
- Measurements can be on high side or low side of the Transformer
- An artificial generator and an ideal transformer are added at the boundary bus to playback PMU measurements

Example Validation Plots - **Simulated vs PMU data**

Sensitivity Analysis- Identify Key Parameters

- Identifies Key Parameters for each model that have most effect on the P and Q response
- Ranks Parameters based on Sensitivity Values

Parameter	MSE-P	MSE-Q	Ranks		Min	Max	
GENSAL- Par 0	0.3562	1.19294	7				
GENSAL- Par 1	0.05373	0.07745	14				
GENSAL- Par 2	1.4388	0.39999	6				
GENSAL- Par 3	19.13134	3.89948	1	,			
GENSAL- Par 4	0.0	0.0					Specify Range of parameter
GENSAL- Par 5	0.02824	0.13205	12				opeony range of parameter
GENSAL- Par 6	3.02644	1.10927	4				values for Calibration Process
GENSAL- Par 7	1.79128	3.23443	3				
GENSAL- Par 8	0.95289	4.44052	2				
GENSAL- Par 9	0.00129	0.00177	22				
GENSAL- Par 10	0.00028	0.00267	21				
GENSAL- Par 11	0.00419	0.16833	11				
HYGOV- Par 0	0.00021	3e-05	25				
HYGOV- Par 1	0.01525	0.00142	17				
HYGOV- Par 2	0.0012	6e-05	23				
HYGOV- Par 3	0.00402	0.00028	20				
HYGOV- Par 4	0.00805	0.00125	19				
HYGOV- Par 5	0.01905	0.00096	16				
HYGOV- Par 6	0.0	0.0					
HYGOV- Par 7	0.0	0.0					
HYGOV- Par 8	0.0088	0.00104	18				
HYGOV- Par 9	0.02207	0.00282	15				Red – Top 5 Most Sensitive
HYGOV- Par 10	0.00074	0.00016	24				Parameters
HYGOV- Par 11	0.00012	2e-05	26				
SCRX- Par 0	0.11311	1.13153	8				<mark>Yellow</mark> – Next 5 Most Sensitive
SCRX- Par 1	0.00683	0.49723	9				White – Remaining Parameters - 11
SCRX- Par 2	0.12592	0.42198	10				
SCRX- Par 3	0.01961	0.12695	13				onwards
SCRX- Par 4	0.0	0.0					Green – Least Sensitive
SCRX- Par 5	0.44422	1.58719	5				
SCRX- Par 6	0.0	0.0					
SCRX- Par 7	0.0	0.0					15

Calibration Results - Identified Parameter Values

Parameter	Description	Old Value	New Value
GENSAL Parameter 2	T''qo (sec)	0.24	0.2
GENSAL Parameter 3	H, Inertia	4.0	4.7

Reactive Power (Before & After Calibration)

Case Study

Gas Turbine Generator - Model Validation & Calibration

230 MVA Gas Turbine Generator

Models: GENROU REXS GGOV1 PSS2A

GEN	ROU	RE	XS	GGG	OVI	PSS	2A
Param	Value	Param	Value	Param	Value	Param	Value
Xd	1.85	Tr	0.02	R	0.05	J1	1
X'd	0.21	Kvp	600	Rselect	1	K1	0
X``d	0.15	Kvi	0	Tpelec	0.6	J2	3
Xq	1.3	Vimax	0.2	Maxerr	0.025	K2	0
X'q	0.7	Та	0.02	Minerr	-0.025	Tw1	1
X [°] q	0.15	Tb1	1	Kpgov	6	Tw2	1
X1	0.15	Tc1	10	Kigov	0.22	Tw3	5
Ra	0.003	Tb2	1	Kdgov	0	Tw4	0
T'd0	5	Tc2	1	Tdgov	1	T6	0
T''d0	0.25	Vrmax	10	Vmax	1	T7	5
T'q0	1	Vrmin	-10	Vmin	0.24	Ks2	0.5
T''q0	0.05	Kf	0.045	Tact	0.6	Ks3	1
S(1.0)	0.12	Tf	5	Kturb	1.5	Ks4	1
S(1.2)	0.48	Tf1	1	Wfnl	0.25	T8	0.5
H	3.1	Tf2	1	Tb	1	T9	0.1
D	0	Fbf	1	Tc	1	N	1
Rcomp	0	Kip	5	Flag	1	М	5
Xcomp	0	Kii	0	Teng	0	Ks1	15
Accel	0.5	Тр	0	Tfload	0.3	T1	0.28
Kis	0	Vfmax	99	Kpload	1	T2	0.043
Pfd	0	Vfmin	-99	Kiload	3.3	T3	0.281
Pkd	0	Kh	0	Ldref	1	T4	1.16
Pfq	0	Ke	0.4	Dm	0	Vstmax	0.1
Pkq	0	Te	1.2	Ropen	99	Vstmin	-0.1
Speed	0	Kc	0	Rclose	-99	Α	1
Angle	0	Kd	0.7	Kimw	0	Ta	0
		E1	2.4	Pmwset	0	Tb	0.043
		Se1	0.05	Asest	99		
		E2	3.2	Ka	10		
		Se2	0.3	Ta	1		
		Rcomp	0	Db	0		
		Xcomp	0	Tsa	1		
		Nvphz	0	Tsb	1		
		Kvphz	0	Rup	99		
		Flimf	0	Rdown	-99		

Source: NASPI PPMV Workshop October 2016

Validation Results – Event 1&2

Significant Difference in P and Q Response between Simulated & PMU data

Sensitivity Analysis for One Event

Parameter	MSE-P	MSE-Q	Ranks		Min	Max	Parameter	MSE-P	MSE-Q	Ranks		Min	Max	Parameter	MSE-P	MSE-Q	Ranks		Min	Max	Parameter	MSE-P	MSE-Q	Ranks	Min	Ma
GENROU- Par 0	0.00021	0.00034	27				GGOV1- Par 13	5e-05	4e-05	34				REXSYS- Par 7	1e-05	0.0	40				PSS2A- Par 3	1e-05	1e-05			
GENROU- Par 1	0.00029	0.00249	21				GGOV1- Par 14	6e-05	4e-05	33				REXSYS- Par 8	1e-05	0.0	43				PSS2A- Par 4	0.0	0.0			
GENROU- Par 2	1e-05	0.00016	29				GGOV1- Par 15	0.0	0.0					REXSYS- Par 9	0.0	0.0					PSS2A- Par 5	0.00069	0.00109	26		
GENROU- Par 3	0.00015	5e-05	30				GGOV1- Par 16	0.0	0.0					REXSYS- Par 10	0.0	0.0					PSS2A- Par 6	0.00079	0.00123	25		
GENROU- Par 4	0.00693	0.0026	11				GGOV1- Par 17	0.0	0.0					REXSYS- Par 11	0.00047	0.00479	12				PSS2A- Par 7	0.00013	0.07901	3		
GENROU- Par 5	0.0	0.0					GGOV1- Par 18	0.0	0.0					REXSYS- Par 12	0.00056	0.00469	13	Γ			PSS2A- Par 8	7e-05	0.00703	10		
GENROU- Par 6	0.00015	0.00397	14				GGOV1- Par 19	0.0	0.0					REXSYS- Par 13	0.00046	0.0034	18	Γ			PSS2A- Par 9	0.00058	0.01232	7		
GENROU- Par 7	0.003	0.01045	9				GGOV1- Par 20	0.0	0.0					REXSYS- Par 14	0.00055	0.00344	17	Γ			PSS2A- Par 10	0.00031	0.0138	6		
GENROU- Par 8	0.00114	0.023	5				GGOV1- Par 21	0.0	0.0					REXSYS- Par 15	0.03888	0.1535	1				PSS2A- Par 11	0.00025	0.00388	16		
GENROU- Par 9	0.00066	0.00153	22				GGOV1- Par 22	0.0	0.0					REXSYS- Par 16	1e-05	0.0	45				PSS2A- Par 12	6e-05	0.00017	28		
GENROU- Par 10	0.02694	0.04476	4				GGOV1- Par 23	0.0	0.0					REXSYS- Par 17	0.0	0.0					PSS2A- Par 13	0.00025	0.0039	15		
SENROU- Par 11	0.0491	0.10461	2				GGOV1- Par 24	0.0	0.0					REXSYS- Par 18	0.0	0.0					PSS2A- Par 14	0.00027	0.0105	8		
GENROU- Par 12	2e-05	5e-05	35				GGOV1- Par 25	0.0	0.0					REXSYS- Par 19	0.0	0.0					PSS2A- Par 15	0.0	0.0			
GENROU- Par 13	1e-05	3e-05	37				GGOV1- Par 26	0.0	0.0					REXSYS- Par 20	0.0	0.0		Г			PSS2A- Par 16	0.0	0.0			
GGOV1- Par 0	2e-05	1e-05	39				GGOV1- Par 27	0.0	0.0					REXSYS- Par 21	0.0	0.0		Γ								
GGOV1- Par 1	1e-05	1e-05	46				GGOV1- Par 28	0.0	0.0					REXSYS- Par 22	0.00027	0.00125	24									
GGOV1- Par 2	0.0	0.0					GGOV1- Par 29	0.0	0.0					REXSYS- Par 23	1e-05	1e-05	42									
GGOV1- Par 3	0.0	0.0					GGOV1- Par 30	0.0	0.0					REXSYS- Par 24	0.0	0.0		Г								
GGOV1- Par 4	0.0001	7e-05	31				GGOV1- Par 31	0.0	0.0					REXSYS- Par 25	9e-05	0.00135	23									
GGOV1- Par 5	0.0	0.0					GGOV1- Par 32	0.0	0.0					REXSYS- Par 26	0.0	0.0										
GGOV1- Par 6	0.0	0.0					REXSYS- Par 0	1e-05	2e-05	38				REXSYS- Par 27	0.0	0.0										
GGOV1- Par 7	0.0	0.0					REXSYS- Par 1	1e-05	0.0			\square		REXSYS- Par 28	1e-05	0.0										
GGOV1- Par 8	0.0	0.0					REXSYS- Par 2	0.0	0.0					REXSYS- Par 29	0.0	0.0		Г								
GGOV1- Par 9	0.0	0.0					REXSYS- Par 3	0.0	0.0		Г			REXSYS- Par 30	0.0	0.0										
GGOV1- Par 10	4e-05	4e-05	36				REXSYS- Par 4	0.0	0.0		Г			PSS2A- Par 0	1e-05	0.00277	20									
GGOV1- Par 11	0.0001	6e-05	32				REXSYS- Par 5	1e-05	0.0	41	Г			PSS2A- Par 1	1e-05	0.00277	19									
GGOV1- Par 12	1e-05	0.0		П			REXSYS- Par 6	1e-05	0.0	44				PSS2A- Par 2	0.0	0.0										

Sensitivity Analysis Results Across Multiple Events

Top 15 Parameters

Rank	Model	Parameter
1	GENROU	XI
2	PSS2A	Ks1
3	REXS	Tf
4	PSS2A	Т9
5	GENROU	Н
6	GENROU	Хq
7	REXS	Tc1
8	PSS2A	Т8
9	PSS2A	Tw2
10	PSS2A	Tw1
11	GGOV1	Kpgov
12	GGOV1	Kturb
13	REXS	Кір
14	REXS	Tb1
15	GENROU	X'q

Range of Parameters for Calibration

Rank	Model	Parameter	Old Value	Minimum	Maximum
1	GENROU	XI	0.15	0.01	0.5
2	PSS2A	Ks1	15	1	50
3	REXS	Tf	5	1	10
4	PSS2A	Т9	0.1	0.01	1
5	GENROU	Н	3.1	0.5	10
6	GENROU	Xq	1.3	0.1	4
7	REXS	Tc1	10	1	20
8	PSS2A	Т8	0.5	0.1	3
9	PSS2A	Tw2	1	0.1	10
10	PSS2A	Tw1	1	0.1	10
11	GGOV1	Kpgov	6	0.5	15
12	GGOV1	Kturb	1.5	0.1	10
13	REXS	Кір	5	0.5	15
14	REXS	Tb1	1	0.1	10
15	GENROU	X'q	0.7	0.1	3

P & Q Simulated Response Compared to PMU data - Before & After Calibration

Calibration Results - Event 1, 2 & 3

After Calibration, Simulated P and Q Response Matches PMU data for All Events

New Identified Model Parameters

Final 11 Parameters

Model	Parameter	Old Value	New Value
GENROU	Н	3.1	6
GENROU	X'q	0.7	0.4
GGOV1	Kpgov	6	3
GGOV1	Kturb	1.5	3
PSS2A	Ks1	15	30
PSS2A	Tw2	1	5
PSS2A	Tw1	1	5
REXS	Tf	5	1
REXS	Tc1	10	1
REXS	Кір	5	1
REXS	Tb1	1	10

Effect of Incorrect AVR gain on Reactive Power Response

Similar Signature but Offset During the Event

Effect of Incorrect Inertia(H) on Active Power Response of a Coal Fired Plant

Higher Inertia Constant – Takes More Time to Settle

Key Takeaways

- Select only the key parameters for Calibration Process
 - > If all parameters are selected, Optimization algorithm tends to change parameters that do not affect the response significantly
- Use Engineering Judgment to Narrow Down on Correct Parameter Values
 - > Tighten range for narrowing down on correct parameter values
 - > Different Bounds for Different Parameters
- Validating Calibration Results with Multiple Events
 - > Identify most sensitive parameters across all events
 - > Use few events to calibrate and all events to validate

7⁄6 Sensitivity An	alysis/Pa	irameter	Selecti	on																×
Parameter	MSE-P	MSE-Q	Ranks		Min	Max	Parameter	MSE-P	MSE-Q	Ranks		Min	Max	Parameter	MSE-P	MSE-Q	Ranks		Min	Max
GENROU- Par 0	0.00328	0.00607	16				ST5B- Par 1	0.00362	0.00645	15				PSS2B- Par 18	0.0	0.0				
GENROU- Par 1	8e-05	6e-05	38				ST5B- Par 2	0.00354	0.00697	14				PSS2B- Par 19	0.0	0.0				
GENROU- Par 2	3e-05	0.00081	31				ST5B- Par 3	0.00249	0.00144	23				PSS2B- Par 20	0.0	0.0				
GENROU- Par 3	0.00019	0.00074	32				ST5B- Par 4	0.00249	0.00141	22				PSS2B- Par 21	0.0	0.0				
GENROU- Par 4	0.00461	0.01474	5				ST5B- Par 5	0.00365	0.00712	13				PSS2B- Par 22	0.0	0.0				
GENROU- Par 5	0.0	0.0					ST5B- Par 6	0.0	0.0											
GENROU- Par 6	4e-05	0.00015	36				ST5B- Par 7	0.0	0.0											
GENROU- Par 7	0.00054	0.01912	3				ST5B- Par 8	0.0	0.0											
GENROU- Par 8	0.0111	0.00359	7				ST5B- Par 9	0.0	0.0											
GENROU- Par 9	0.001	0.00574	17				ST5B- Par 10	0.0	0.0											
GENROU- Par 10	0.0127	0.00996	6				ST5B- Par 11	0.0	0.0											
GENROU- Par 11	0.00091	0.00032	30				ST5B- Par 12	0.0	0.0					·						
GENROU- Par 12	0.0	4e-05	39				ST5B- Par 13	0.0	0.0					r						
GENROU- Par 13	0.0	1e-05					ST5B- Par 14	0.0	0.0					r						
IEEEG1 - Par 0	0.05401	0.00168	2	◄			ST5B- Par 15	0.0	0.0					r						
IEEEG1 - Par 1	0.0	0.0					ST5B- Par 16	0.0	0.0					r						
IEEEG1 - Par 2	0.0	0.0					ST5B- Par 17	0.0	0.0					r						
IEEEG1 - Par 3	1e-05	1e-05	40				PSS2B- Par 0	0.0	0.00142	27				r						
IEEEG1 - Par 4	0.0	0.0					PSS2B- Par 1	0.0	0.00142	26				r						
IEEEG1 - Par 5	0.0	0.0		Г	Ē	Ē	PSS2B- Par 2	0.0	0.0				F	r						
IEEEG1 - Par 6	0.0	0.0		Г	Ē	Ē	PSS2B- Par 3	1e-05	0.00047	34				L I						
IEEEG1 - Par 7	0.0	0.0		Г	Ē	Ē	PSS2B- Par 4	0.0	0.0				F	R						
IEEEG1 - Par 8	6e-05	0.00012	37	П	Ē	Ē	PSS2B- Par 5	0.0043	0.00982	10						_				
IEEEG1 - Par 9	0.00985	0.00081	9	П	Ē	Ē	PSS2B- Par 6	0.00433	0.01089	8			í –	i S	et	Βc)UI	n	15	
IEEEG1 - Par 10	0.0	0.0		Г	Ē	Ē	PSS2B- Par 7	0.00098	2.37367	1	•		í –							
IEEEG1 - Par 11	0.00444	0.00015	18		Ē	Ē	PSS2B- Par 8	5e-05	0.00061	33				l f∩	r I	nd	ivi	hi	112	1
IEEEG1- Par 12	0.00268	7e-05	21				PSS2B- Par 9	0.00036	0.00421	19							IV	i u	uc	
IEEEG1- Par 13	0.0	0.0					PSS2B- Par 10	0.00343	0.01745	4				D	ord	h	5	5	rc	
IEEEG1- Par 14	0.0	0.0					PSS2B- Par 11	0.00219	0.00206	25				Г	aid		IEI	.e	12	
IEEEG1 - Par 15	0.00713	0.00018	12				PSS2B- Par 12	0.00098	0.00046	28				r						
IEEEG1 - Par 16	0.0	0.0				Ē	PSS2B- Par 13	0.00219	0.00206	24				r						
IEEEG1- Par 17	0.0	0.0				Ē	PSS2B- Par 14	0.00098	0.00046	29				r						
IEEEG1- Par 18	0.0	0.0		Г	Ē	Ē	PSS2B- Par 15	0.00337	0.00858	11			í –	r						
IEEEG1 - Par 19	0.0	0.0		П	ĺΠ.	Ē	PSS2B- Par 16	0.00281	0.00412	20			Ē							
ST5B- Par 0	0.00019	9e-05	35	П	í –	Ē	PSS2B- Par 17	0.0	0.0				Ē	·						
		1			P	,					_		<i>p</i>							
	0 –	To	op N	Ę	5 N	10	st So Mos	en:	siti Ser	Ve) iti	Pa	ara	amet	er	S				

White – Remaining Parameters - 11

onwards

Green – Least Sensitive

Generator Model Validation Report

GEN Unit 1 Model Validation

Model Data

The power flow case file includes the power flow data for the generator and the transformer as shown in Figure 4.

Figure 4. Input data -Power flow case file (.azv)

Dynamic File (.dyc)

GEN	ROU	RE	X8	GGG	DV1	PSS2A			
Param	Value	Param	Value	Param	Value	Param	Value		
Xd	1.85	Tr.	0.02	R	0.05	J1	1		
X'd	0.21	Kvp	600	Relect	1	K1	0		
X''d	0.15	Kvi	0	Tpelec	0.6	32	3		
Xq	1.3	Vimax	0.2	Maxerr	0.025	K2	0		
Xq	0.7	Ta	0.02	Minerr	-0.025	Tw1	1		
X''q	0.15	Tb1	1	Kppow	6	Tw2	1		
XI	0.15	Tel	10	Kigov	0.22	Tw3	5		
Ra	0.003	Tb2	1	Kdpov	0	Tw-6	0		
T d0	5	Tc2	1	Tdgov	1	Tő	0		
T'd0	0.25	Vonax	10	Vmax	1	T7	5		
Tq0	1	Vonia	-10	Vmin	0.24	Ks2	0.5		
T''q0	0.05	Kf	0.045	Tact	0.0	Ks3	1		
5(1.0)	0.12	TT	5	Knub	1.5	Ks4	1		
\$(1.2)	0.48	TĤ	1	Wiful	0.25	T8	0.5		
34	3.1	712	1	Tb	1	T9	0.1		
D	0	Fbf	1	Te	1	N	1		
Recomp	0	Kip	5	Flag	1	M	5		
Ncomp	0	Kii	0	Trug	0	Ka1	15		
Accel	0.5	Тр	0	Tfload	0.3	TI	0.28		
Kis	0	Vimax	99	Kpload	1	T2	0.043		
Pfd	0	Vimin	-99	Kiload	3.3	T3	0.281		
Pkd	0	Kh	0	Ldref	1	T4	1.16		
Pfq	0	Ke	0.4	Dm	0	Vistmax	0.1		
Plog	0	Te	1.2	Ropen	99	Votmin	-0.1		
Speed	0	Kc	0	Relose	-99	A	1		
Angle	0	Kd	0.7	Kimw	0	To	0		
		E1	2.4	Proviset	0	ть	0.043		
		Se1	0.05	Asest	99				
		152	3.2	Ka	10				
		Se2	0.3	Ta	1				
		Reomp	0	Db	0				
		Xcomp	0	Tsa	1				
		Nyphz	0	Tsb	1				
		Kuphz	0	Rup	99				
		Flimf	0	Rdown	-99				

Figure 5. Dynamic Model Parameters for Generator & Exciter Models

GEN Unit 1 Model Validation

Validation

Validation process compares the simulated response of the generator to the PMU measured response. Voltage magnitude and angle measurements from the PMU are used for playing back into the simulation and real and reactive power (P & Q) outputs of the simulation are compared to the PMU measurements. Figure 5 shows the comparison plots for the active and reactive power output from the generator. The blue line is the PMU measured response and the red line is the simulated generator response.

Figure 6. Validation Process - Comparing Real and Reactive Power of the Generator

The validation plots show a significant mismatch between the simulated and measured response for both the active and reactive power plots. For the active power plot, there is a phase mismatch during the ring-down of the transient oscillation. For the reactive power, there is a mismatch in the phase and the amplitude of the response of the generator. Calibration is required for correcting the model parameters in order to reduce the mismatch between the simulation and the actual measurements. <figure>

Figure 9. Calibration Results - Active and Reactive Forcer Output with New Identified Forometers

Model	Parameter	Old Value	New Value
GENROU	н	3.1	6
GENROU	X'q	0.7	0.4
GGOV1	Kpgov	6	3
GGOV1	Kturb	1.5	3
PSS2 A	Ks1	15	30
PSS2.A	Tw2	1	5
PSS2 A	Tw1	1	5
REXS	Tf	5	1
REXS	Tc1	10	1
REXS	Kip	5	1
REXS	Tb1	1	10

Figure 10. Calibration Results - Recommended Farameter Values

Calibration Results & New Model Parameters

Validation Results

Q&A, Discussion

Your Practice, Use Cases, Suggestions

Q&A, **Discussion**

• Q&A

- Generator Model Validation
 - Your Practices
 - Use Cases
 - Pain Points
 - Suggestions
- Next Webinar Focus
 - Priority
 - Other topics

EPG Webinar Series

- Extracting large amounts of synchrophasor data efficiently for offline analysis. (August 2016)
- Quickly creating an event report that could be distributed to operators, engineers and managers. (Sept. 2016)
 System Model Validation for MOD-33 Requirement (Oct. 12)
- Configuring alarms and validate parameters to provide meaningful results for operators. (Dec 14)
- Synchrophasor Intelligence in EMS for Use in Operations (Jan 2017)
- Use Cases of Linear State Estimator Technology for Grid Resiliency (Feb 2017)
- Delivering Reliable and Validated PMU Data for Use by Operators (April 2017)
- Generator Model Validation using PMU data for MOD-26, MOD-27 Requirements (June 2017)
- Remote/Mobile access with local host for real-time monitoring and event diagnostics during emergencies
- Data Mining for grid events of different types, e.g. oscillations, generator trips etc.
- Using composite alarms as early warning for operator action
- Addressing data issues, such as PMU timing, phase correction, etc.
- ePDC/DataNXT/RTDMS pub/sub Synchrophasor Distribution Service
- Other topics?

Summary

- Synchrophasor data from PMUs provides a cost effective and efficient way to validate generator model parameters & satisfy NERC MOD-026, MOD-027 requirements
- EPG's GPV tool & methodology
 - > Inputs Required PMU measured event data and Model data
 - > Simple Validation Process
 - > Automated Identification of Key Parameters through sensitivity analysis
 - > Allows User Input and Engineering Judgement for Calibration
 - > Results are combined into a report for documenting model validation and calibration results

Thank you for participating!

If you have any questions regarding any part of the webinar, please contact us at <u>Contact@electricpowergroup.com</u>

http://electricpowergroup.com/webinars.html

Electric Power Group

201 S. Lake Ave., Ste. 400 Pasadena, CA 91101 626-685-2015