Electric Power Group Presents

Maximizing Use of Synchrophasor Technology for Everyday Tasks

Welcome!

The meeting will begin at 2:00 p.m. ET / 11:00 a.m. PT Jan. 18, 2017

Today's Topic: Synchrophasor Intelligence in EMS for Use in Operations

Registration URL: https://electricpowergroup2.webex.com/ Webinar Teleconference Number: 1-650-479-3208

Access code: 666 672 715

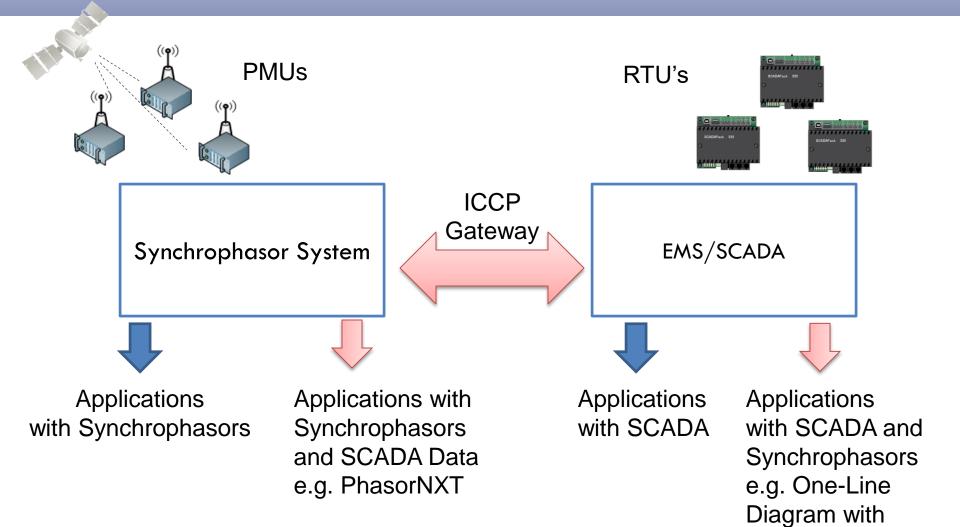
Please mute your phone during the presentation.

We will encourage discussion at planned QA session.

Thank you for your cooperation.

For any technical issues with this webinar, please contact Kosareff@electricpowergroup.com or call (626) 685–2015

Maximizing Use of Synchrophasor Technology for Everyday Tasks


Synchrophasor Intelligence in EMS for Use in Operations

Integration of Synchrophasors and EMS/SCADA through ICCP

January 18, 2017

Simon Mo, Young Zhang, EPG Frank Kopecki, NYISO James Hiebert, CAISO

Synchrophasor & EMS Integration

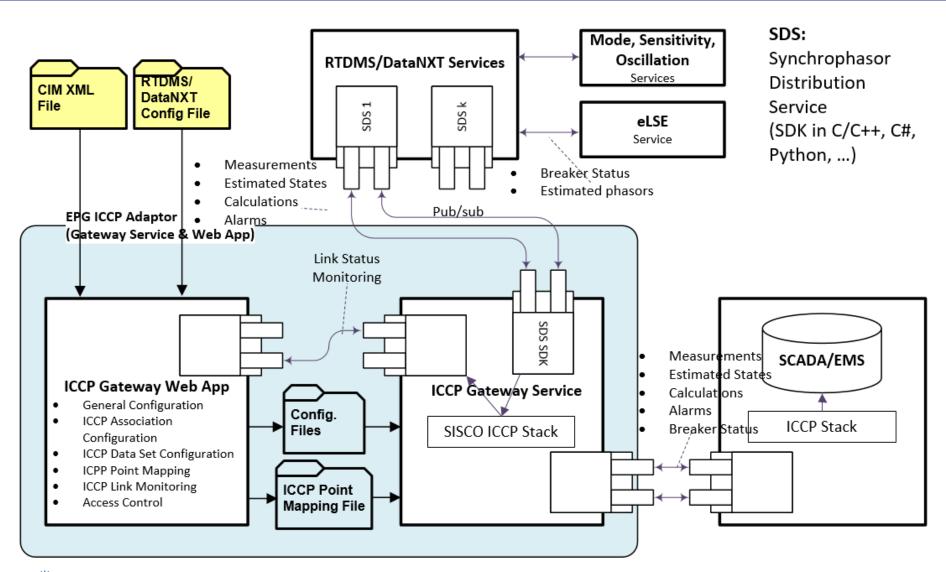
phase angles

What Will This Do?

- Enable EMS/SCADA with Synchrophasors
 - Dynamics: Oscillations, Phase Angles, Sensitivities, etc.
 - Dynamic Alarms and Composite Alarms e.g. Low Damping, Islanding
 - Frequency Disturbance Source Location
 - Transmission MW Flow Constraints
 - Improve State Estimation
 - Improve Grid Resilience
- Data Exchange with ISO's and Utilities
 - Raw PMU Measurements (voltages, currents, frequency, etc.)
 - Calculated Values (angle difference, system frequency, real/reactive power, mode, sensitivity, oscillation, etc.)
 - Alarms/Events (threshold violation, rate of change violation, composite alarms, global alarms etc.)

Synchrophasor Information Available to EMS

	PMU Measurements (Telemetered)	Linear State Estimator (Estimated)	Applications (Calculated)	Alarms/Events (Calculated)
1	Voltage Magnitude & Angle	Voltage Magnitude & Angle	Real & Reactive Power	Threshold Violations (Alarm)
2	Current Magnitude & Angle	Current Magnitude & Angle	Corridor Real & Reactive Power	Rate of Change Violations (Event)
3	Frequency & DF/DT		Angle Difference	Global Alarms & Global Events
4	IEEE 37.118 digitals		System Frequency	Islanding, Generation Trip, and Load Drop Events
5	IEEE 37.118 analogs		Voltage & Angle Sensitivity	Composite Alarms
6			Mode Frequency, Damping Ratio, and Energy	Oscillation & Low Damping Alarms
7			Oscillation Energy for all 4 frequency bands	High voltage/Angle Sensitivity Alarms


EPG ICCP Gateway

- Designed under the Guidance of Industry Partners
- Validated and Trustworthy Data through Synchrophasor Applications (DataNXT, RTDMS, eLSE, etc.)
- Independent of EMS Proprietary Protocols
- Web-based Configuration GUI
- Real Time Monitoring of Communication & Data Flow
- Extensive Logging
- Flexible Deployment Physical, VM; Standalone, Cluster
- High Performance & High Availability
- Provides role-based access control
- Uses Field-Proven SISCO ICCP Stack

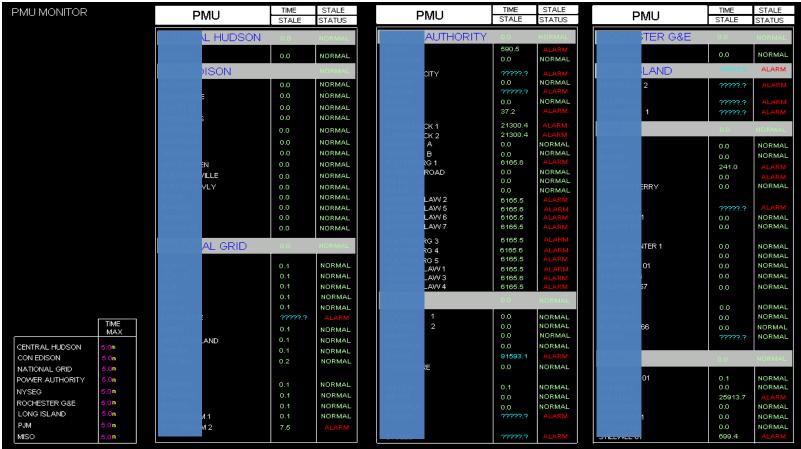
ICCP Gateway Service-Oriented Architecture

Gateway Service & Web App

ICCP Gateway Design Key Features

- Open Standards based Integration Vs. Proprietary Coupling/Bolt-on
- ICCP Gateway Service runs as Windows Service
 - Flexible Deployment
 - Decoupled from Applications (DataNXT, RTDMS, etc.) using SDS Pub/Sub interface
 - Service Oriented Architecture (SoA)
- Control Data Rate Exchange between Synchrophasor Applications and EMS/SCADA. For Example:
 - Average
 - Down-sampled

NYISO Use-Case for Using PMU data in EMS


Benefits of Providing Synchrophasor Data to EMS

- Supplying PMU data to EMS over ICCP provides additional data not available in SCADA from the member T.O.'s and other ISO's
- Provides EMS with another source of data to use in its State Estimator and Intelligent Source Selection Application
- Pass alarms to the EMS in order to integrate RTDMS alarms into the Operator's current Alarm Monitor
- PI Trends using PMU data provide easy comparison to SCADA data to uncover configuration and calibration issues.
- Other purposes for PMU data in the EMS
- Currently, 1800+ ICCP points for synchrophasor data & alarm from RTDMS to EMS

PMU Data Stale Monitor

 A Monitor in EMS used by Operations Control to notify T.O.'s and ISO's when there are issues with PMU's

EMS Use-Case for using PMU data at NYISO

PMU Data Used by State Estimator Application

	Case Title	Snapsh	ot Date/	Time Day Typ		ecution E Status	Execution Da	ate			
ALID SE	SOLUTION	11-	Jan-201	7 09:48 Weekda	у '	Valid	11-Jan-201	7 09:48			
	Analog Measuremer	nt Name	In Use	Measurement : Value	SE Value	Measurement Residual	Norm Residual	Measurement Confidence	Covariance /Sigma	Type	Sign≜
SCTLNE	99K	KV_PMU	Yes	354.9	354.3	0.6	0.59	0.36	1.0	KV	
	5_K3411	KV_PM	Yes	357.6	356.9	0.7	0.7	0.39	1.0	KV	-
	WD1	KV_PMU	Yes	230.2	230.8	-0.6	-0.55	0.6	1.0	KV	-
	5_A	KV_PMU	Yes	353.2	352.5	0.7	0.68	0.32	1.0	ΚV	-
	45 <u>9</u> 2	KV_PMU	Yes	356.7	355.7	1.0	1.02	0.43	1.0	ΚV	-
	7040	KV_PMU	Yes	751.6	752.4	-0.9	-0.87	1.01	0.9	KV	-
	0_Y-2277	KV_PM	Yes	239.0	241.7	-2.8	-2.79	0.5	1.0	ΚV	-
	230_T-2272	KV_PMU	Yes	237.4	239.3	-1.9	-1.86	0.82	1.0	ΚV	-
	TR8 45	KV_PM	Yes	352.6	351.5	1.2	1.18	0.52	1.0	KV	-
	230_A_	KV_PMU	Yes	230.8	233.7	-2.9	-2.94	0.38	1.0	ΚV	-
	45 <u>9</u> 4	KV_PMU	Yes	357.1	355.7	1.4	1.4	0.43	1.0	KV	-
	230_B	KV_PMU	Yes	232.0	233.7	-1.8	-1.78	0.38	1.0	KV	-
	ARM-HOM	KV_P	Yes	357.4	357.9	-0.4	-0.43	0.98	0.9	KV	-
	0_A-941	KV_PM	Yes	239.0	241.7	-2.7	-2.74	0.5	1.0	KV	-
	80_99H	KV_PM	Yes	233.5	237.8	-4.2	-4.25	0.67	1.0	KV	-
	MM2	KV_PMU	Yes	230.1	230.8	-0.6	-0.65	0.6	1.0	KV	-
	WRY2	KV_PMU	Yes	231.2	230.8	0.4	0.42	0.6	1.0	KV	-
	K-2289	KV_PMU	Yes	237.6	239.3	-1.7	-1.75	0.82	1.0	KV	-
	_R-2270	KV_PMU	Yes	237.7	239.3	-1.6	-1.64	0.82	1.0	KV	-
	15_BK_1	KV_P	Yes	117.6	116.4		1.21	0.61	1.0	KV	-
	1888 <mark>45SR1</mark>	KV_PM	Yes	352.7	351.5	1.2	1.22	0.52	1.0	KV	-
	845_AT1	KV_PMU	Yes	754.9	755.9		-1.03	0.67	1.0	KV	-
	NS-1	KV_PMU kv pm	Yes	351.9 767.5	350.2 767.8		1.68 -n.3	0.63 1.98	1.0 n z	KV KV	

PMU Data Used in Voltage Intelligent Source Selection (Custom NYISO Application)

PMU source has been selected as best choice

								VISS2								
				IN USE												
	STATION	ΚV	UPDATE STATE	TIME STALE	IN USE vs SE	TIME SUSPECT	0(SE)	1	2	3	4	5	6	SELECT SOURCE	BEST SOURCE	QUALIT
S	PANNELL RD	353.5	NORMAL	1.1	NORMAL	0.0	352.3	0.0	353.5	353.5				2	2	NORMAL
S	a casalina Y	352.8	NORMAL	0.1	NORMAL	0.0	353.8	355.4	355.6	352.8	355.1	300.0 T D	356.4	3	3	NORMAI
S	RAINEY BABT	352.7	NORMAL	0.1	NORMAL	0.0	354.0	352.2	352.2	352.7	351.2			3	3	NORMA
s	RAINEY WEST	352.7	NORMAL	0.0	NORMAL	0.0	354.0	352.5	352.7					2	2	NORMA
S	KAMAPO	354.3	NORMAL	0.2	NORMAL	0.0	354.3	356.0	355.5	347.4	341.3 T D	355.3		0 M T	5	DEGRA
S	ROCHESTER	352.2	NORMAL	0.0	NORMAL	0.0	351.7	353.5	353.1	352.8	353.5	352.2	352 3	5	5	NORMA
S	ROCK TAVERT	352.6	NORMAL	3.2	NORMAL	0.0	352.8	352.6	353.3	352.4	350.5			1	1	NORMA
S	ROSETON	353.9	NORMAL	0.3	NORMAL	0.0	355.2	356.8	353.9	356.8	353.2	354.4	355.0	2 H T	6	DEGRA
:	AH	355.2	NORMAL	0.2	SUSPCT	?????.?	355.2	357.0 M T						0 M T	1	DEGRA
S	<	350.5	NORMAL	0.0	NORMAL	0.0	353.7	349.2	350.5	348.1				2	2	NORMA
	STOLLE RD	0.2	NORMAL	0.0	SUSPCT	27261.6	361.0	353.7T	0.2	351.3T				2 H T	1	DEGRA
1	VOLNEY	354.2	NORMAL	0.0	NORMAL	0.0	354.0	353.1	353.1	353.7	354.2	354.4	35 .7	4	4	NORMA
1	WATERCURE	354.5	NORMAL	0.0	NORMAL	0.0	353.4	355.6	354.6	354.5				з	3	NORMA
S	GARDENVILLE	234.7 L	NORMAL	0.0	NORMAL	0.0	234.8	235.0	235.5	235.7	234.2	234.2	234.7	6	6	NORMA
	HUNTLEY	234.6	NORMAL	0.0	NORMAL	0.0	234.7	232.7	233.9	234.6	235.3	232.7	233.8	3	3	NORMA
	MEYER	233.4	NORMAL	0.0	NORMAL	0.0	233.6	230.7	231.5	233.4				3	3	NORMA
S	MOSES	235.0	NORMAL	0.0	NORMAL	0.0	234.6	234.1	235.7					2	2	NORMA
s I	IIAGARA E	238.1	NORMAL	0.0	NORMAL	0.0	238.1	0.0	237.9	237.9	238.4	0.8T	238.2	31	6	NORMA
s	NIAGARA W	237.9	NORMAL	0.0	NORMAL	0.0	238.1	237.9	238.4	0.0	237.9	238.0	229.3	1 T	5	NORMA
	DAKDALE	230.7	NORMAL	0.0	SUSPCT	?????.?	236.4	229.2	230.7					2	2	NORM/
	PACKARD	236.2	NORMAL	0.1	NORMAL	0.0	236.4	236.2	236.0	237.1				1	1	NORM/
	ROTTERDAM	233.4	NORMAL	0.0	SUSPCT	201.8	237.7	232.8	232.6	231.5	233.4	233.4T		4	4	NORMA
	STOLLE RD	232.8	STALE	??.?	NORMAL	0.0	234.7	232.8						1	1	NORMA
s١	VATERCURE	232.1	STALE	??.?	NORMAL	0.0	232.9	229.7	232.1	231.5 T				2	2	NORMA
	IORTHPORT	139.9	NORMAL	0.7	NORMAL	0.0	139.9	140.0	139.9	140.2				2	2	NORMA
	IOR THEORY	139.2	NORMAL	1.4	NORMAL	0.0	139.0	139.2	139.5					1	1	NORM/
,	AM	140.0	NORMAL	2.6	NORMAL	0.0	139.0	140.0	140.3	140.3				1	1	NORMA
	(101															
																1

Synchrophasor Global Alarms

Alarm Types

PMU_ANGLE_DIFFERENCE_VIOLATION

PMU_CURRENT_MAGNITUDE_VIOLATION

PMU_CURRENT_R-O-C_VIOLATION

PMU_VOLTAGE_MAGNITUDE_VIOLATION

PMU_VOLTAGE_R-O-C_VIOLATION

PMU_FREQ_MAGNITUDE_VIOLATION

PMU_FREQ_R-O-C_VIOLATION

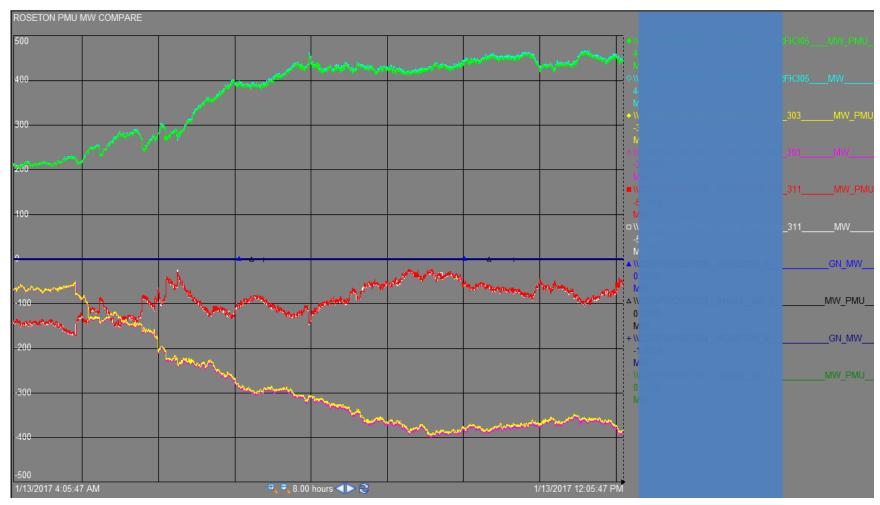
PMU_FLOW_MW_MAGNITUDE_VIOLATION

PMU_FLOW_MVAR_MAG_VIOLATION

PMU_INTERFACE_MW_MAG_VIOLATION

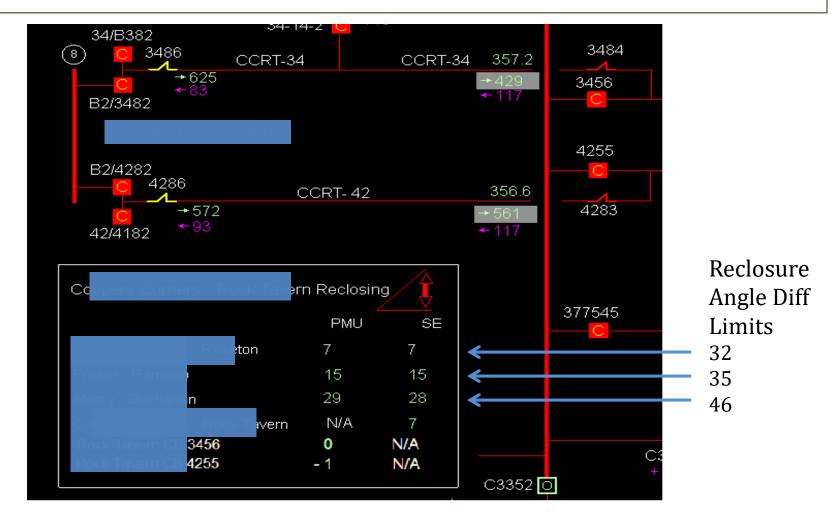
PMU_INTERFACE_MVAR_MAG_VIOLATION

PMU_SYS_FREQ_MAGNITUDE_VIOLATION


PMU_SYS_FREQ_R-O-C_VIOLATION

EMS Alarm Message

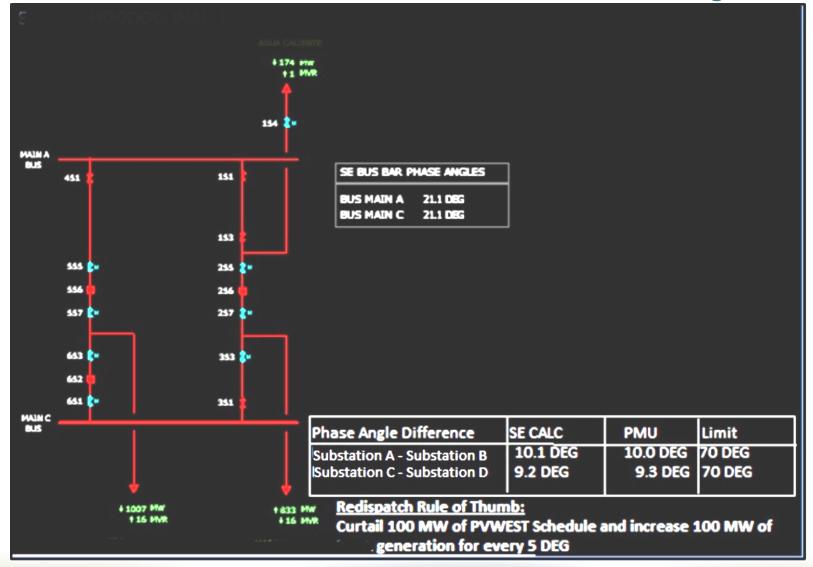
Event Date/Time	Message								
11/JAN/2017 04:44:23	Z_PMU	PMU_FREQ_R-O-C_VIOLATION	PMU Exceeds Rate-Of-Change Limit 2 RTN						
11/JAN/2017 04:44:23	Z_PMU	PMU_FREQ_R-O-C_VIOLATION	PMU Exceeds Lo Rate-Of-Change Limit 1 RT						
11/JAN/2017 04:44:18	Z_PMU	PMU_FREQ_R-O-C_VIOLATION	PMU Exceeds Lo Rate-Of-Change Limit 1						
11/JAN/2017 04:44:18	Z_PMU	PMU_FREQ_R-O-C_VIOLATION	PMU Exceeds Rate-Of-Change Limit 2						
11/JAN/2017 04:29:32	Z_PMU	PMU_VOLTAGE_R-O-C_VIOLATION	PMU Exceeds Rate-Of-Change Limit 2 RT						
11/JAN/2017 04:29:32	Z_PMU	PMU_VOLTAGE_R-O-C_VIOLATION	PMU Exceeds Lo Rate-Of-Change Limit 1						
11/JAN/2017 04:28:46	Z_PMU	PMU_VOLTAGE_R-O-C_VIOLATION	PMU Exceeds Lo Rate-Of-Change Limit 1						
11/JAN/2017 04:28:46	Z_PMU	PMU_VOLTAGE_R-O-C_VIOLATION	PMU Exceeds Rate-Of-Change Limit 2						


PI Trends to Compare SCADA Data to Synchrophasor Data

Angle Difference Used to Determine 345 KV Line Reclosures

Example of Incorporating PMU Measurements in the CAISO EMS/Control Room

CAISO Use-Case for Using PMU data in EMS


- Angle Difference Monitoring & Operation Procedure for Reclosure – Displayed on EMS One-Line
- MW Flow for Major Tie Lines used in AGC Calculation (Resiliency), e.g. COI
- Frequency Measurements for Redundant Inputs (Resiliency)
 - AGC Calculation
 - Islanding Detection
 - Black Start
- Frequency Disturbance Source Location
- Local Oscillation Detection
 - Electro-mechanical or
 - Control Issues at Power Plant
- Share Data with TOs through ICCP, e.g., Line Angle Difference Limits

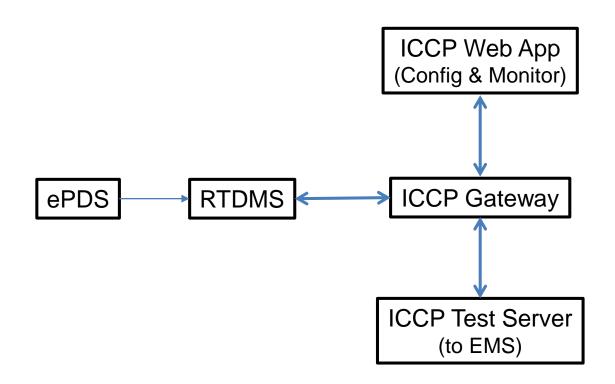
CAISO Synchrophasor Activities

- CAISO will have the following capabilities
 - predict the potential phase angle difference <u>before</u> the line trip (State Estimator and contingency analysis).
 - show the actual observed phase angle difference <u>after</u> the line trip
- These functionalities will allow the system operators
 - to be prepared before the contingency
 - to know the actual system conditions after the contingency

CAISO Line Closure Procedure with Phase Angle

CAISO Synchrophasor Project Overview Future Activities

- dynamic phase angle difference limit study the usefulness of combining real-time PMU measurements with model-based programs (OMS, DSA, RTCA, etc)
- additional studies on oscillation mode detection and analysis – combined efforts with adjacent balancing authorities to write operating procedures
- linear State Estimator and hybrid solutions
 - looking at LSE to help improve data quality
- joint efforts with the Western Utilities and United States Department of Energy



Demonstration & Key Take-aways

ICCP Gateway & ICCP Web App

Demo Setup

Summary

- Bridges the Gap between Synchrophasors and EMS
- Enables companies to realize value from Synchrophasors via integration with EMS and Data Exchange
- ICCP Gateway Provides
 - Production Grade Solution
 - Commercial Off-The-Shelf
 - One ICCP Gateway with Many End-Point Connections
 - Two-way data transfer (i.e. import breaker status & limits into Synchrophasor applications)
 - Designed to meet Redundancy and High Availability Requirements
 - Easy to Configure & Monitor ICCP Links through Web Browsers Locally or Remotely
 - Built on Industry Standard SISCO Stack
 - Security Management Features for IT Administration

Q&A, Discussion

Your Practice, Use Cases, Suggestions

Q&A, Discussion

- Q&A
- Synchrophasor Application & EMS Integration
 - Your Practices
 - Use Cases
 - Pain Points
 - Suggestions
- Next Webinar Focus
 - Priority
 - Other topics

EPG Webinar Series

- Extracting large amounts of synchrophasor data efficiently for offline analysis. (August 2016)
- Quickly creating an event report that could be distributed to operators, engineers and managers. (Sept. 2016)
- System Model Validation for MOD-33 Requirement (Oct. 12)
- Configuring alarms and validate parameters to provide meaningful results for operators.
 (Dec 14)
- Synchrophasor Intelligence in EMS for Use in Operations (Jan 2017)
- Use Cases of Linear State Estimator Technology for Grid Resiliency (Feb 2017)
- Providing secure remote access to users in real-time for monitoring and diagnostics during normal times and emergencies.
- Using alarms & events for proactive actions
- Mining large data archives for events of different types, e.g. oscillations, generator trips etc.
- Other topics?

Thank you for participating!

If you have any questions regarding any part of the course, please contact us at Contact@electric

http://electricpowergroup.com/webinars.html

201 S. Lake Ave., Ste. 400 Pasadena, CA 91101 626-685-2015