Electric Power Group Presents Phasor Data Mining Application – PDMA

Mining Phasor Data To Find The Hidden Gems In Your Archive

October 16, 2014

Presented by Vivek Bhaman & Frank Carrera

Webinar Phone Number: (650) 479-3208

Welcome! The presentation will begin at 1pm EDT / 10am PDT.

For any technical issues with this webinar, please contact Kosareff@electricpowergroup.com or call (626) 685–2015

Today's PDMA Webinar Outline

- I. About Phasor Data Mining Application (PDMA)
 - Need
 - Solution
 - Data Sources
 - Uses
- II. Demonstration of PDMA Use Cases
 - 1. Identifying events Generation Loss
 - 2. Finding Relevant Oscillation Modes in the Power Grid
 - 3. Identifying Key PMUs for Oscillation Alarms
 - 4. Focusing Frequency Response Analysis on relevant Generation Loss Events
 - 5. Setting proper alarm thresholds based on historical behavior

Some Uses of PDMA

- Generation Loss Loss of unit or a unit run-back outage
- Load Loss Drop of load or a load trip
- Line Faults Single Phase or Three Phase scenarios
- Line Trip Change in Topology or Line Outage
- Oscillations Inter-area, Control system, Regional
- Delayed Voltage Recovery Elongated Low Voltage Conditions
- Grid Stress High Power Flow or Increased Angle Difference

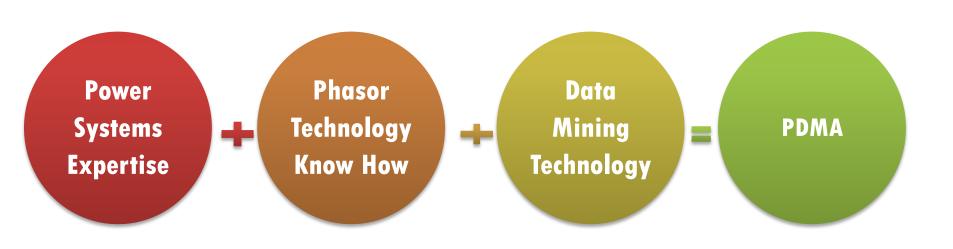
Need for PDMA

Issues & Challenges

Need for PDMA: Issues

- Establish realistic and significant thresholds
- Identify Oscillatory Vulnerabilities
 - Unknown Oscillations
 - Temporary Oscillations triggered by disturbances
- Determine System Unknowns
 - Near-Misses
 - Missed / Unrecorded Events
 - Identify situations of system vulnerability combinations, correlations
- Quantify System Performance
 - How Many Events Where, When, How Severe?
 - Missed Events

Need for PDMA: Challenges


- Volume of data to be mined
 - Terabytes being recorded everyday
 - Huge volumes of previously archived data to be processed
 - Multiple data sources and file formats
- Mining for Power Systems Information Vs. Extraction of Records
 - Derive meaningful information
 (extract → process /analyze → resultant information) Vs. "Pull Data"
 - Expertise required to translate data into information, e.g.
 - Identifying generation trips from frequency data
 - Correlating High Angle Values with Low Voltages to determine vulnerability
 - Algorithmic processing to identify oscillations
- State of Current Off-the Shelf Tools
 - Not built for mining per se
 - Volume, Data Handling and Expertise limitations
 - For preconfigured extractions (queries, views, look-ups)
 - Not Specific for Power Systems General statistical analytics

What is PDMA?

Product Overview

PDMA – What it is

PDMA – What it is

- Designed for Power Systems analytics.
- Expert system to dig through huge volumes of phasor data to identify relevant events, behavior patterns and discover insights
- PDMA mines for "events" such as
 - Generation Loss Loss of unit or a unit run-back outage
 - Load Loss Drop of load or a load trip
 - Oscillations Inter-area, Control system, Regional
 - Line Faults Single Phase or Three Phase scenarios
 - Line Trip Change in Topology or Line Outage
 - Delayed Voltage Recovery Elongated Low Voltage Conditions
 - Grid Stress High Power Flow or Increased Angle Difference

PDMA – 5 Solvers Functions

Value Violation

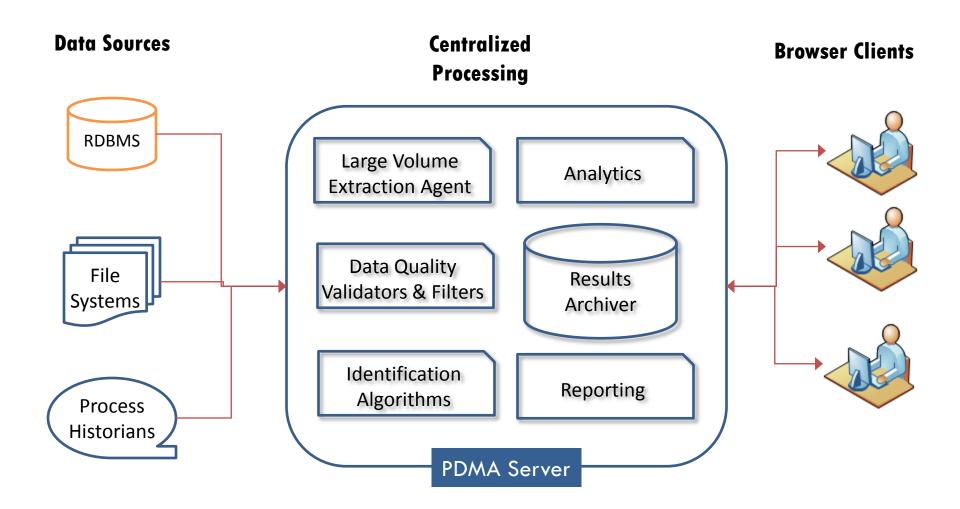
Identifies Events based on different levels of threshold

Events – Generation Trip, Line Trip

Identifies Events based on predefined templates (user configurable)

Oscillation

Identifies Events that has modes with low damping & High Energy


Logical Combination – AND, OR

 Identifies Events based on combination of user defined combinations of metric thresholds

Baselining

Provides Statistical information based on selected metrics

PDMA Architecture

Mining – It's all about the Data

Multiple Sources

- RTDMS DB
- Phasor Archiver
- COMTRADE Files
- DST Files (BPA Phasor File Format)
- OSI PI
- eDNA
- Other Flat File Formats
- Mine across multiple data sources
- Consolidate or Breakdown Mining Results
 - By Data Source
 - By Time Period
 - By Jobs

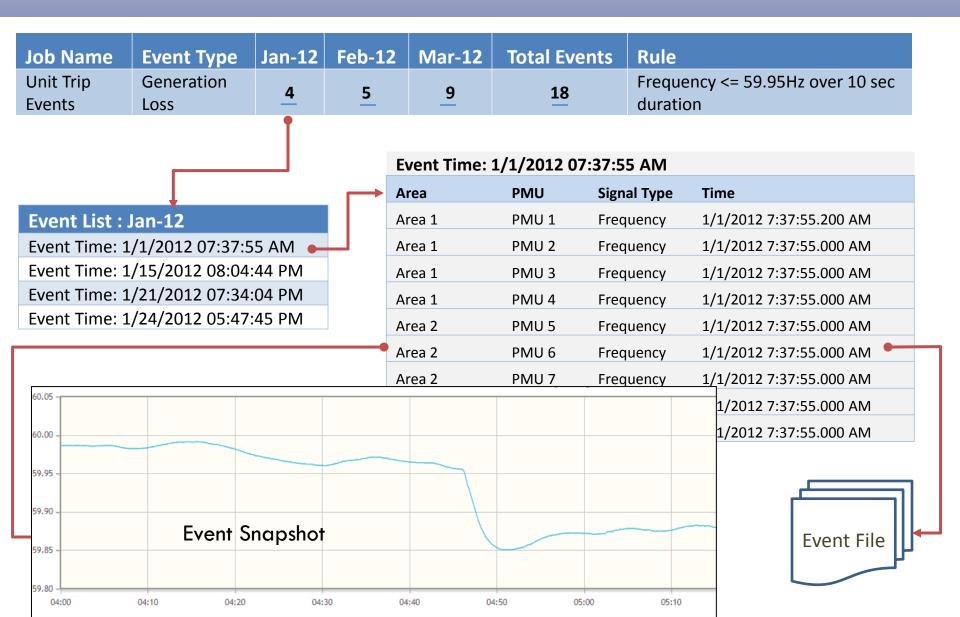
PDMA Demonstration – Walk Through

- Opening Screen
- Data Mining
 - Create a Job
 - Manage All Job
 - Export & Delete Job
- Analysis
 - Pivot Table Results
 - Trend Chart of Data
 - Charts & Graphs
- Report & Export Results
 - Save to PDF, DOCX, ect.
 - Report on single or combination of multiple jobs

PDMA Use Cases

- 1. Mining for specific events Generation Loss
- 2. Finding Relevant Oscillations
- 3. Identifying Key PMUs for Oscillation Alarms
- 4. Focusing Frequency Response Analysis on relevant Generation Loss Events
- 5. Setting proper alarm thresholds based on historical behavior

Use Case 1


Mining for events – Generation Loss

Example: Generation Loss Identification

Job Rule	Rule Based Eve	ent Solver											
	Mode:	Solve On PMU F	Solve On PMU Frequency										
	Parameters												
	Event Type:	Generation Trip	Generation Trip			Field	Ор	Value	Duratio				
	Buffer Size (seconds):	60				FREQUENCY	<=	59.95	10	Edit New Delete Edit New Delete			
	Suppression Duration (Rest potie): Trigger	300											
	Phasors and Re	ferences											
	New Pha	sor	Reference			Phasor ID			Device	: ID			
		New No data to disp	lay			Ν	o data t						
業 Electric P													

Generation Loss Mining : Results

Use Case 2

Finding Relevant Oscillations

PDMA – Oscillation Mining: Rich Parameter Selection

Algorithm	Yule Walker Spectral						
Algorithm Time Window	Time Duration for Algorithm in each step (recommend 60 s)						
Results Interval	Time Duration for Algorithm Output in each step (recommend 60 s)						
Damping Filter	Max Value in percentage that discards Modes greater than Max Value (recommend 8%)						
Frequency Range Filter	Min and Max Value in Hertz (Hz) for Mode Filtering (recommended 0 to 15Hz)						
Mode Energy Filter	Min Value that discards Modes below value						
Other Algorithm Parameters	 ✓ AR order ✓ MA order ✓ Number of data points for AR ✓ Nfft (Time Duration in seconds for FFT) ✓ Estimated Maximum Number of Modes ✓ Mode Tolerance (Grouping Modes) 						

Meaningful Results: What modes should operators monitor in real time?

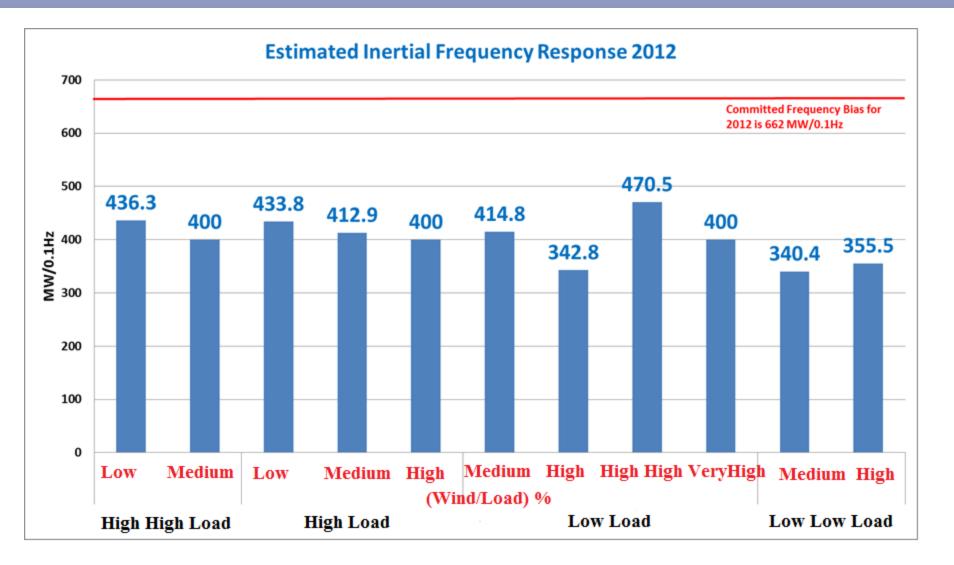
Solver: 1 Job, 1 Oscillation Solver, 8 PMUs, 1-Month, Damping < 8%, Frequency 0-15, Energy > 0.1

Frequency Bands	#PMUs Observing Oscillations	# of Unique Oscillations	# of Unique Osc. Events	Osc. with Highest Energy	Mode with Highest Occurrence	Mode with Lowest Damping
<i>Inter Area</i> 0 - 1 Hz	3	2	8	0.6Hz	0.6Hz, (3)	0.3
<i>Local Area</i> 1 - 2 Hz	4	1	1	1.8Hz	1.8Hz	1.8
<i>Controller</i> 2 - 3 Hz	8	2	3	2.8Hz	2.8Hz	2.8

How many PMU's to be monitored for damping alarms?

1 Job, 1 Oscillation Solver ,1-Month, Damping < 0.1%, Frequency 0-15, Energy > 0.1

# of PMUs	60	40	20	8
# of Modes detected	6	5	5	5
# of Events detected	12	12	12	12


- Monitoring 8 PMUs is as good as monitoring 60.
- Drill Down to see the list of "high visibility" PMUs

Use Case 3

Focusing Frequency Response Analysis on relevant Generation Loss Events

Frequency Response Adequacy

Use Case 4

Setting proper alarm thresholds based on historical behavior

Mining Synchrophasor Data for Alarm Thresh

Data Mining

Total Events

Identified Events Statistics

- Count of Events by
 - Event Type
 - Month
 - Total

By Event Type

Severity – Different levels of alarm threshold (high, medium & low)

Drop Filter Fields Here	Here By Se				y Severity By Month											
Total Events	Year	∆ 👻 Mo	nth ∆[Severity	Level 2											
		🗆 2012										V				
Event Type 🛛 🖉	🗆 Jan	uary		January	February		February	March				2012 Total				
	HIGH	MEDIUM	LOW	Total	HIGH	MEDIUM	LOW	Total	HIGH	MEDIUM	LOW	Total				
LOW_FREQUENCY		9	141	150	0	10	131	141	6	36	143	185	476			
LOW_VOLTAGE_MAGNITUDE		35	66	147	38	25	47	110	158	43	72	273	530			
HIGH_PHASE_ANGLE_CHANGE		3	0	5934	3855	32	43	3930	7925	468	387	8780	18644			
LOW_OSCILLATION_DAMPING		13	4	279	393	5	0	398	28	17	29	74	751			
HIGH_PHASE_ANGLE_RATE_OF_CHANGE		0	0	2363	1556	0	0	1556	41666	0	0	41666	45585			

Conclusion

- PDMA is a tool for extracting Grid Performance Insight
 - Generation Loss Events
 - Line Trip Events
 - Sustained Oscillations
- PDMA is ideal for Setting Alarms
 - Focus Operators on real issues
 - Reduce / Remove noisy alarms
- PDMA finds the hidden gems in your Archive

Now and Next

Release Plan, Road Map

Near Term Road Map

Data Adapters

- PI, eDNA, OpenHistorian, Flat Files
- SE Data

Data Quality

- Advanced DQ Validation
- Data Conditioning, Filters

Analytics

- Advanced event identification
- Combination & Correlation Analytics
- Results management

Integration

 Statistical Engine

Release Plan

- Undergoing testing and UX fine-tuning
- Inviting Beta participants
 - Feedback, Design Input, Functional Requirements
- Scheduled for Commercial Release: January 2015

Phones lines are being un-muted

Thank You!

201 S. Lake Ave., Suite 400 Pasadena, CA 91101 (626)685-2015 www.ElectricPowerGroup.com

